Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Neuropharmacology ; 245: 109828, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38158014

ABSTRACT

Oxaliplatin (OXA) is an antineoplastic agent used for the treatment of cisplatin-resistant tumours, presenting lower incidence of nephrotoxicity and myelotoxicity than other platinum-based drugs. However, OXA treatment is highly associated with painful peripheral neuropathy, a well-known and relevant side effect caused by mitochondrial dysfunction. The transfer of functional exogenous mitochondria (mitotherapy) is a promising therapeutic strategy for mitochondrial diseases. We investigated the effect of mitotherapy on oxaliplatin-induced painful peripheral neuropathy (OIPN) in male mice. OIPN was induced by i.p. injections of oxaliplatin (3 mg/kg) over 5 consecutive days. Mechanical (von Frey test) and cold (acetone drop test) allodynia were evaluated between 7 and 17 days after the first OXA treatment. Mitochondria was isolated from donor mouse livers and mitochondrial oxidative phosphorylation was assessed with high resolution respirometry. After confirming that the isolated mitochondria were functional, the organelles were administered at the dose of 0.5 mg/kg of mitochondrial protein on days 1, 3 and 5. Treatment with OXA caused both mechanical and cold allodynia in mice that were significant 7 days after the initial injection of OXA and persisted for up to 17 days. Mitotherapy significantly prevented the development of both sensory alterations, and attenuated body weight loss induced by OXA. Mitotherapy also prevented spinal cord ERK1/2 activation, microgliosis and the increase in TLR4 mRNA levels. Mitotherapy prevented OIPN by inhibiting neuroinflammation and the consequent cellular overactivity in the spinal cord, presenting a potential therapeutic strategy for pain management in oncologic patients undergoing OXA treatment.


Subject(s)
Antineoplastic Agents , Pain , Peripheral Nervous System Diseases , Humans , Male , Mice , Animals , Oxaliplatin/toxicity , Hyperalgesia/chemically induced , Hyperalgesia/prevention & control , Hyperalgesia/drug therapy , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/prevention & control , Antineoplastic Agents/toxicity
2.
Exp Biol Med (Maywood) ; 248(22): 2039-2044, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38058027

ABSTRACT

Arthritogenic alphaviruses are mosquito-borne viruses that cause a debilitating rheumatic disease characterized by fever, headache, rash, myalgia, and polyarthralgia with the potential to evolve into a severe and very prolonged illness. Although these viruses have been geographically restricted by vector hosts and reservoirs, recent epidemics have revealed the risks of their spread worldwide. In this review, we aim to discuss the protective and pathological roles of macrophages during the development of arthritis caused by alphaviruses. The progression to the chronic phase of the disease is related to the extension of viral replication and the maintenance of articular inflammation, in which the cellular infiltrate is predominantly composed of macrophages. We explore the possible implications of macrophage polarization to M1/M2 activation phenotypes, drawing a parallel between alphavirus arthritis and rheumatoid arthritis (RA), a chronic inflammatory disease that also affects articular tissues. In RA, it is well established that M1 macrophages contribute to tissue damage and inflammation, while M2 macrophages have a role in cartilage repair, so modulating the M1/M2 macrophage ratio is being considered as a strategy in the treatment of this disease. In the case of alphavirus-induced arthritis, the picture is more complex, as proinflammatory factors derived from M1 macrophages contribute to the antiviral response but cause tissue damage, while M2 macrophages may contribute to tissue repair but impair viral clearance.


Subject(s)
Alphavirus Infections , Alphavirus , Arthritis, Rheumatoid , Animals , Humans , Macrophages , Inflammation
3.
Behav Brain Res ; 451: 114519, 2023 08 05.
Article in English | MEDLINE | ID: mdl-37263423

ABSTRACT

Zika virus (ZIKV) infection causes severe neurological consequences in both gestationally-exposed infants and adults. Sensorial gating deficits strongly correlate to the motor, sensorial and cognitive impairments observed in ZIKV-infected patients. However, no startle response or prepulse inhibition (PPI) assessment has been made in patients or animal models. In this study, we identified different outcomes according to the age of infection and sex in mice: neonatally infected animals presented an increase in PPI and delayed startle latency. However, adult-infected male mice presented lower startle amplitude, while a PPI impairment was observed 14 days after infection in both sexes. Our data further the understanding of the functional impacts of ZIKV on the developing and mature nervous system, which could help explain other behavioral and cognitive alterations caused by the virus. With this study, we support the startle reflex testing in ZIKV-exposed patients, especially infants, allowing for early detection of functional neuromotor damage and early intervention.


Subject(s)
Zika Virus Infection , Zika Virus , Female , Male , Animals , Mice , Reflex, Startle/physiology , Prepulse Inhibition , Zika Virus Infection/complications , Acoustic Stimulation
4.
iScience ; 26(3): 106197, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36890794

ABSTRACT

Nucleocapsid (NC) assembly is an essential step of the virus replication cycle. It ensures genome protection and transmission among hosts. Flaviviruses are human viruses for which envelope structure is well known, whereas no information on NC organization is available. Here we designed a dengue virus capsid protein (DENVC) mutant in which a highly positive spot conferred by arginine 85 in α4-helix was replaced by a cysteine residue, simultaneously removing the positive charge and restricting the intermolecular motion through the formation of a disulfide cross-link. We showed that the mutant self-assembles into capsid-like particles (CLP) in solution without nucleic acids. Using biophysical techniques, we investigated capsid assembly thermodynamics, showing that an efficient assembly is related to an increased DENVC stability due to α4/α4' motion restriction. To our knowledge, this is the first time that flaviviruses' empty capsid assembly is obtained in solution, revealing the R85C mutant as a powerful tool to understand the NC assembly mechanism.

5.
Cell Rep ; 42(3): 112189, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36857178

ABSTRACT

Cognitive dysfunction is often reported in patients with post-coronavirus disease 2019 (COVID-19) syndrome, but its underlying mechanisms are not completely understood. Evidence suggests that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike protein or its fragments are released from cells during infection, reaching different tissues, including the CNS, irrespective of the presence of the viral RNA. Here, we demonstrate that brain infusion of Spike protein in mice has a late impact on cognitive function, recapitulating post-COVID-19 syndrome. We also show that neuroinflammation and hippocampal microgliosis mediate Spike-induced memory dysfunction via complement-dependent engulfment of synapses. Genetic or pharmacological blockage of Toll-like receptor 4 (TLR4) signaling protects animals against synapse elimination and memory dysfunction induced by Spike brain infusion. Accordingly, in a cohort of 86 patients who recovered from mild COVID-19, the genotype GG TLR4-2604G>A (rs10759931) is associated with poor cognitive outcome. These results identify TLR4 as a key target to investigate the long-term cognitive dysfunction after COVID-19 infection in humans and rodents.


Subject(s)
COVID-19 , Cognitive Dysfunction , Humans , Animals , Mice , COVID-19/complications , Spike Glycoprotein, Coronavirus/genetics , SARS-CoV-2/metabolism , Toll-Like Receptor 4 , Post-Acute COVID-19 Syndrome
6.
Biomol NMR Assign ; 17(1): 23-26, 2023 06.
Article in English | MEDLINE | ID: mdl-36723824

ABSTRACT

Dengue virus belongs to the Flaviviridae family, being responsible for an endemic arboviral disease in humans. It is an enveloped virus, whose genome is a positive-stranded RNA packaged by the capsid protein. Dengue virus capsid protein (DENVC) forms homodimers in solution organized in 4 α-helices and an intrinsically disordered N-terminal region. The N-terminal region is involved in the binding of membranous structures in host cells and in the recognition of nucleotides. Here we report the 1H, 15N and 13C resonance assignments of the DENVC with the deletion of the first 19 intrinsically disordered residues. The backbone chemical shift perturbations suggest changes in the α1 and α2 helices between full length and the truncated proteins.


Subject(s)
Capsid Proteins , Dengue Virus , Humans , Capsid Proteins/chemistry , Dengue Virus/chemistry , Dengue Virus/genetics , Dengue Virus/metabolism , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Secondary , Protein Conformation, alpha-Helical
7.
J Clin Virol Plus ; 2(4): 100121, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36349309

ABSTRACT

Background: Vaccination against COVID-19 was implemented very quickly, but the emergence of new variants that can evade the previous acquired immunological protection highlights the importance of understanding the mechanisms involved in the immune response generated after SARS-CoV-2 infection or vaccination. Objectives: Since most of our knowledge on the humoral immunity generated against SARS-CoV-2 has been obtained from studies with infected patients before vaccination, our goal here was to evaluate seroconversion and its correlation with the titers of neutralizing antibodies (NAbs) in individuals who received the complete initial recommended vaccination schedule with three different vaccines. Study design: We analyzed serum IgG, IgA and total NAbs against the trimeric SARS-CoV-2 Spike (S) protein or its receptor binding domain (RBD) in blood samples collected from 118 healthy individuals without known previous infection, before and after receiving the first and the second dose of CoronaVac (n = 18), ChAdOx-1 (n = 68) or BNT162b2 (n = 32) vaccines. Results: We found that although IgG titers were high in all sera collected after the two doses of these vaccines, NAbs amounts varies among the groups. In contrast, serum NAbs concentrations were much more comparable to the IgA levels, indicating that these antibodies would have a major neutralizing capacity against SARS-CoV-2. Conclusions: Altogether our data suggest that quantification of serum anti-S or anti-RBD IgA, rather than IgG, may be a valuable tool to screen NAbs and may be considered for surveillance of vaccine coverage.

8.
Angew Chem Int Ed Engl ; 61(46): e202205858, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36115062

ABSTRACT

SARS-CoV-2 (SCoV2) and its variants of concern pose serious challenges to the public health. The variants increased challenges to vaccines, thus necessitating for development of new intervention strategies including anti-virals. Within the international Covid19-NMR consortium, we have identified binders targeting the RNA genome of SCoV2. We established protocols for the production and NMR characterization of more than 80 % of all SCoV2 proteins. Here, we performed an NMR screening using a fragment library for binding to 25 SCoV2 proteins and identified hits also against previously unexplored SCoV2 proteins. Computational mapping was used to predict binding sites and identify functional moieties (chemotypes) of the ligands occupying these pockets. Striking consensus was observed between NMR-detected binding sites of the main protease and the computational procedure. Our investigation provides novel structural and chemical space for structure-based drug design against the SCoV2 proteome.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , Proteome , Ligands , Drug Design
9.
Sci Rep ; 12(1): 10366, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35725758

ABSTRACT

The Covid-19 pandemic, caused by SARS-CoV-2, has resulted in over 6 million reported deaths worldwide being one of the biggest challenges the world faces today. Here we present optimizations of all steps of an enzyme-linked immunosorbent assay (ELISA)-based test to detect IgG, IgA and IgM against the trimeric spike (S) protein, receptor binding domain (RBD), and N terminal domain of the nucleocapsid (N-NTD) protein of SARS-CoV-2. We discuss how to determine specific thresholds for antibody positivity and its limitations according to the antigen used. We applied the assay to a cohort of 126 individuals from Rio de Janeiro, Brazil, consisting of 23 PCR-positive individuals and 103 individuals without a confirmed diagnosis for SARS-CoV-2 infection. To illustrate the differences in serological responses to vaccinal immunization, we applied the test in 18 individuals from our cohort before and after receiving ChAdOx-1 nCoV-19 or CoronaVac vaccines. Taken together, our results show that the test can be customized at different stages depending on its application, enabling the user to analyze different cohorts, saving time, reagents, or samples. It is also a valuable tool for elucidating the immunological consequences of new viral strains and monitoring vaccination coverage and duration of response to different immunization regimens.


Subject(s)
COVID-19 , Seroconversion , Antibodies, Viral/analysis , Brazil , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , ChAdOx1 nCoV-19/administration & dosage , Coronavirus Nucleocapsid Proteins/immunology , Humans , Immunoglobulin A , Immunoglobulin G , Immunoglobulin M , Pandemics , Phosphoproteins/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Vaccines, Inactivated/administration & dosage
10.
Pharmaceutics ; 14(4)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35456572

ABSTRACT

Viral disease outbreaks affect hundreds of millions of people worldwide and remain a serious threat to global health. The current SARS-CoV-2 pandemic and other recent geographically- confined viral outbreaks (severe acute respiratory syndrome (SARS), Ebola, dengue, zika and ever-recurring seasonal influenza), also with devastating tolls at sanitary and socio-economic levels, are sobering reminders in this respect. Among the respective pathogenic agents, Zika virus (ZIKV), transmitted by Aedes mosquito vectors and causing the eponymous fever, is particularly insidious in that infection during pregnancy results in complications such as foetal loss, preterm birth or irreversible brain abnormalities, including microcephaly. So far, there is no effective remedy for ZIKV infection, mainly due to the limited ability of antiviral drugs to cross blood-placental and/or blood-brain barriers (BPB and BBB, respectively). Despite its restricted permeability, the BBB is penetrable by a variety of molecules, mainly peptide-based, and named BBB peptide shuttles (BBBpS), able to ferry various payloads (e.g., drugs, antibodies, etc.) into the brain. Recently, we have described peptide-porphyrin conjugates (PPCs) as successful BBBpS-associated drug leads for HIV, an enveloped virus in which group ZIKV also belongs. Herein, we report on several brain-directed, low-toxicity PPCs capable of targeting ZIKV. One of the conjugates, PP-P1, crossing both BPB and BBB, has shown to be effective against ZIKV (IC50 1.08 µM) and has high serum stability (t1/2 ca. 22 h) without altering cell viability at all tested concentrations. Peptide-porphyrin conjugation stands out as a promising strategy to fill the ZIKV treatment gap.

11.
PLoS One ; 17(3): e0264643, 2022.
Article in English | MEDLINE | ID: mdl-35231063

ABSTRACT

Dengue virus (DENV) causes a major arthropod-borne viral disease, with 2.5 billion people living in risk areas. DENV consists in a 50 nm-diameter enveloped particle in which the surface proteins are arranged with icosahedral symmetry, while information about nucleocapsid (NC) structural organization is lacking. DENV NC is composed of the viral genome, a positive-sense single-stranded RNA, packaged by the capsid (C) protein. Here, we established the conditions for a reproducible in vitro assembly of DENV nucleocapsid-like particles (NCLPs) using recombinant DENVC. We analyzed NCLP formation in the absence or presence of oligonucleotides in solution using small angle X-ray scattering, Rayleigh light scattering as well as fluorescence anisotropy, and characterized particle structural properties using atomic force and transmission electron microscopy imaging. The experiments in solution comparing 2-, 5- and 25-mer oligonucleotides established that 2-mer is too small and 5-mer is sufficient for the formation of NCLPs. The assembly process was concentration-dependent and showed a saturation profile, with a stoichiometry of 1:1 (DENVC:oligonucleotide) molar ratio, suggesting an equilibrium involving DENVC dimer and an organized structure compatible with NCLPs. Imaging methods proved that the decrease in concentration to sub-nanomolar concentrations of DENVC allows the formation of regular spherical NCLPs after protein deposition on mica or carbon surfaces, in the presence as well as in the absence of oligonucleotides, in this latter case being surface driven. Altogether, the results suggest that in vitro assembly of DENV NCLPs depends on DENVC charge neutralization, which must be a very coordinated process to avoid unspecific aggregation. Our hypothesis is that a specific highly positive spot in DENVC α4-α4' is the main DENVC-RNA binding site, which is required to be firstly neutralized to allow NC formation.


Subject(s)
Dengue Virus , Capsid Proteins/genetics , Dengue Virus/genetics , Humans , Nucleocapsid/metabolism , Oligonucleotides/metabolism , RNA/metabolism , Virus Assembly
12.
Front Immunol ; 13: 810376, 2022.
Article in English | MEDLINE | ID: mdl-35185902

ABSTRACT

Exacerbated inflammatory response and altered vascular function are hallmarks of dengue disease. Reactive oxygen species (ROS) production has been associated to endothelial barrier disturbance and microvascular alteration in distinct pathological conditions. Increased ROS has been reported in in vitro models of dengue virus (DENV) infection, but its impact for endothelial cell physiology had not been fully investigated. Our group had previously demonstrated that infection of human brain microvascular endothelial cells (HBMEC) with DENV results in the activation of RNA sensors and production of proinflammatory cytokines, which culminate in cell death and endothelial permeability. Here, we evaluated the role of mitochondrial function and NADPH oxidase (NOX) activation for ROS generation in HBMEC infected by DENV and investigated whether altered cellular physiology could be a consequence of virus-induced oxidative stress. DENV-infected HBMECs showed a decrease in the maximal respiratory capacity and altered membrane potential, indicating functional mitochondrial alteration, what might be related to mtROS production. Indeed, mtROS was detected at later time points after infection. Specific inhibition of mtROS diminished virus replication, cell death, and endothelial permeability, but did not affect cytokine production. On the other hand, inhibition of NOX-associated ROS production decreased virus replication and cell death, as well as the secretion of inflammatory cytokines, including IL-6, IL-8, and CCL5. These results demonstrated that DENV replication in endothelial cells induces ROS production by different pathways, which impacts biological functions that might be relevant for dengue pathogenesis. Those data also indicate oxidative stress events as relevant therapeutical targets to avoid vascular permeability, inflammation, and neuroinvasion during DENV infection.


Subject(s)
Antiviral Agents/pharmacology , Dengue Virus/drug effects , Endothelium, Vascular/virology , Reactive Oxygen Species/metabolism , Virus Replication/drug effects , Capillary Permeability/drug effects , Cell Line , Cells, Cultured , Cytokines/metabolism , Dengue/immunology , Dengue/virology , Dengue Virus/genetics , Endothelium, Vascular/drug effects , Humans , Oxidative Stress/drug effects
13.
Int J Biol Macromol ; 203: 466-480, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35077748

ABSTRACT

The SARS-CoV-2 nucleocapsid protein (N) is a multifunctional promiscuous nucleic acid-binding protein, which plays a major role in nucleocapsid assembly and discontinuous RNA transcription, facilitating the template switch of transcriptional regulatory sequences (TRS). Here, we dissect the structural features of the N protein N-terminal domain (N-NTD) and N-NTD plus the SR-rich motif (N-NTD-SR) upon binding to single and double-stranded TRS DNA, as well as their activities for dsTRS melting and TRS-induced liquid-liquid phase separation (LLPS). Our study gives insights on the specificity for N-NTD(-SR) interaction with TRS. We observed an approximation of the triple-thymidine (TTT) motif of the TRS to ß-sheet II, giving rise to an orientation difference of ~25° between dsTRS and non-specific sequence (dsNS). It led to a local unfavorable energetic contribution that might trigger the melting activity. The thermodynamic parameters of binding of ssTRSs and dsTRS suggested that the duplex dissociation of the dsTRS in the binding cleft is entropically favorable. We showed a preference for TRS in the formation of liquid condensates when compared to NS. Moreover, our results on DNA binding may serve as a starting point for the design of inhibitors, including aptamers, against N, a possible therapeutic target essential for the virus infectivity.


Subject(s)
COVID-19/virology , Nucleic Acids/metabolism , Nucleocapsid Proteins/metabolism , Protein Interaction Domains and Motifs , SARS-CoV-2/physiology , Binding Sites , DNA/chemistry , DNA/metabolism , Gene Expression Regulation, Viral , Host-Pathogen Interactions , Humans , Hydrogen Bonding , Models, Molecular , Nucleic Acids/chemistry , Nucleocapsid Proteins/chemistry , Protein Binding , RNA/chemistry , RNA/metabolism , Spectrum Analysis , Structure-Activity Relationship
14.
J Enzyme Inhib Med Chem ; 37(1): 287-298, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34894959

ABSTRACT

We synthesised and screened 18 aromatic derivatives of guanylhydrazones and oximes aromatic for their capacity to bind to dengue virus capsid protein (DENVC). The intended therapeutic target was the hydrophobic cleft of DENVC, which is a region responsible for its anchoring in lipid droplets in the infected cells. The inhibition of this process completely suppresses virus infectivity. Using NMR, we describe five compounds able to bind to the α1-α2 interface in the hydrophobic cleft. Saturation transfer difference experiments showed that the aromatic protons of the ligands are important for the interaction with DENVC. Fluorescence binding isotherms indicated that the selected compounds bind at micromolar affinities, possibly leading to binding-induced conformational changes. NMR-derived docking calculations of ligands showed that they position similarly in the hydrophobic cleft. Cytotoxicity experiments and calculations of in silico drug properties suggest that these compounds may be promising candidates in the search for antivirals targeting DENVC.


Subject(s)
Antiviral Agents/pharmacology , Capsid Proteins/antagonists & inhibitors , Dengue Virus/drug effects , Hydrazones/pharmacology , Oximes/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Capsid Proteins/metabolism , Dengue Virus/metabolism , Dose-Response Relationship, Drug , Hydrazones/chemical synthesis , Hydrazones/chemistry , Hydrophobic and Hydrophilic Interactions , Microbial Sensitivity Tests , Molecular Structure , Oximes/chemical synthesis , Oximes/chemistry , Structure-Activity Relationship
15.
Neuropharmacology ; 201: 108841, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34666076

ABSTRACT

A strong association between perinatal viral infections and neurodevelopmental disorders has been established. Both the direct contact of the virus with the developing brain and the strong maternal immune response originated by viral infections can impair proper neurodevelopment. Coronavirus disease 2019 (COVID-19), caused by the highly-infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently responsible for a large global outbreak and is a major public health issue. While initial studies focused on the viral impact on the respiratory system, increasing evidence suggest that SARS-CoV-2 infects other organs and tissues including the mature brain. While studies continue to determine the neuropathology associated to COVID-19, the consequences of SARS-CoV-2 infection to the developing brain remain largely unexplored. The present review discusses evidence suggesting that SARS-CoV-2 infection may have persistent effects on the course of pregnancy and on brain development. Studies have shown that several proinflammatory mediators which are increased in the SARS-CoV-2-associated cytokine storm, are also modified in other viral infections known to increase the risk of neurodevelopmental disorders. In this sense, further studies should assess the genuine effects of SARS-CoV-2 infection during pregnancy and delivery along with an extended follow-up of the offspring, including neurocognitive, neuroimaging, and electrophysiological examination. It also remains to be determined whether and by which mechanisms SARS-CoV-2 intrauterine and early life infection could lead to an increased risk of developing neuropsychiatric disorders, such as autism (ASD) and schizophrenia (SZ), in the offspring.


Subject(s)
Autism Spectrum Disorder/epidemiology , COVID-19/epidemiology , Cytokine Release Syndrome/epidemiology , Neurodevelopmental Disorders/epidemiology , Pregnancy Complications, Infectious/epidemiology , Prenatal Exposure Delayed Effects/epidemiology , Schizophrenia/epidemiology , Autism Spectrum Disorder/immunology , Brain/embryology , Brain/immunology , COVID-19/immunology , Cytokine Release Syndrome/immunology , Female , Humans , Infectious Disease Transmission, Vertical , Neurodevelopmental Disorders/immunology , Pregnancy , Pregnancy Complications, Infectious/immunology , Prenatal Exposure Delayed Effects/immunology , Risk Factors , SARS-CoV-2 , Schizophrenia/immunology
16.
Front Cell Infect Microbiol ; 11: 714088, 2021.
Article in English | MEDLINE | ID: mdl-34568093

ABSTRACT

Dengue virus (DENV) is the most widespread arbovirus, responsible for a wide range of clinical manifestations, varying from self-limited illness to severe hemorrhagic fever. Dengue severity is associated with host intense proinflammatory response and monocytes have been considered one of the key cell types involved in the early steps of DENV infection and immunopathogenesis. To better understand cellular mechanisms involved in monocyte infection by DENV, we analyzed the expression levels of 754 human microRNAs in DENV-infected THP-1 cells, a human monocytic cell line. Eleven human microRNAs showed differential expression after DENV infection and gene ontology and enrichment analysis revealed biological processes potentially affected by these molecules. Five downregulated microRNAs were significantly linked to cellular response to stress, four to cell death/apoptosis, two to innate immune responses and one upregulated to vesicle mediated, TGF-ß signaling, phosphatidylinositol mediated signaling, lipid metabolism process and blood coagulation.


Subject(s)
Dengue , MicroRNAs , Monocytes , Dengue/genetics , Dengue Virus , Humans , Immunity, Innate , MicroRNAs/genetics , Monocytes/metabolism , Monocytes/virology , THP-1 Cells
17.
J Virol ; 95(22): e0090421, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34468171

ABSTRACT

Zika virus (ZIKV) infection became a worldwide concern due to its correlation with the development of microcephaly and other neurological disorders. ZIKV neurotropism is well characterized, but the role of peripheral viral amplification to brain infection remains unknown. Here, we found that ZIKV replicates in human primary skeletal muscle myoblasts, impairing its differentiation into myotubes but not interfering with the integrity of the already-formed muscle fibers. Using mouse models, we showed ZIKV tropism to muscle tissue either during embryogenesis after maternal transmission or when infection occurred after birth. Interestingly, ZIKV replication in the mouse skeletal muscle started immediately after ZIKV inoculation, preceding viral RNA detection in the brain and causing no disruption to the integrity of the blood brain barrier, and remained active for more than 2 weeks, whereas replication in the spleen and liver were not sustained over time. In addition, ZIKV infection of the skeletal muscle induces necrotic lesions, inflammation, and fiber atrophy. We also found a reduction in the expression of regulatory myogenic factors that are essential for muscle repair after injury. Taken together, our results indicate that the skeletal muscle is an early site of viral amplification and lesion that may result in late consequences in muscle development after ZIKV infection. IMPORTANCE Zika Virus (ZIKV) neurotropism and its deleterious effects on central nervous system have been well characterized. However, investigations of the initial replication sites for the establishment of infection and viral spread to neural tissues remain underexplored. A complete description of the range of ZIKV-induced lesions and others factors that can influence the severity of the disease is necessary to prevent ZIKV's deleterious effects. ZIKV has been shown to access the central nervous system without significantly affecting blood-brain barrier permeability. Here, we demonstrated that skeletal muscle is an earlier site of ZIKV replication, contributing to the increase of peripheral ZIKV load. ZIKV replication in muscle promotes necrotic lesions and inflammation and also impairs myogenesis. Overall, our findings showed that skeletal muscle is involved in pathogenesis and opens new fields in the investigation of the long-term consequences of early infection.


Subject(s)
Muscle Fibers, Skeletal/virology , Zika Virus Infection/virology , Zika Virus/physiology , Aedes , Animals , Animals, Newborn , Cell Line , Female , Humans , Infectious Disease Transmission, Vertical , Mice , Mice, Knockout , Muscle Fibers, Skeletal/cytology , Myoblasts , Virus Replication
18.
Biophys J ; 120(14): 2814-2827, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34197802

ABSTRACT

The nucleocapsid (N) protein of betacoronaviruses is responsible for nucleocapsid assembly and other essential regulatory functions. The N protein N-terminal domain (N-NTD) interacts and melts the double-stranded transcriptional regulatory sequences (dsTRSs), regulating the discontinuous subgenome transcription process. Here, we used molecular dynamics (MD) simulations to study the binding of the severe acute respiratory syndrome coronavirus 2 N-NTD to nonspecific (NS) and TRS dsRNAs. We probed dsRNAs' Watson-Crick basepairing over 25 replicas of 100 ns MD simulations, showing that only one N-NTD of dimeric N is enough to destabilize dsRNAs, triggering melting initiation. dsRNA destabilization driven by N-NTD was more efficient for dsTRSs than dsNS. N-NTD dynamics, especially a tweezer-like motion of ß2-ß3 and Δ2-ß5 loops, seems to play a key role in Watson-Crick basepairing destabilization. Based on experimental information available in the literature, we constructed kinetics models for N-NTD-mediated dsRNA melting. Our results support a 1:1 stoichiometry (N-NTD/dsRNA), matching MD simulations and raising different possibilities for N-NTD action: 1) two N-NTD arms of dimeric N would bind to two different RNA sites, either closely or spatially spaced in the viral genome, in a cooperative manner; and 2) monomeric N-NTD would be active, opening up the possibility of a regulatory dissociation event.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Nucleocapsid Proteins/genetics , Nucleoproteins , RNA
19.
Curr Opin Virol ; 47: 106-112, 2021 04.
Article in English | MEDLINE | ID: mdl-33721656

ABSTRACT

The Flaviviridae family comprises important human pathogens, including Dengue, Zika, West Nile, Yellow Fever and Japanese Encephalitis viruses. The viral genome, a positive-sense single-stranded RNA, is packaged by a single protein, the capsid protein, which is a small and highly basic protein that form intertwined homodimers in solution. Atomic-resolution structures of four flaviviruses capsid proteins were solved either in solution by nuclear magnetic resonance spectroscopy, or after protein crystallization by X-ray diffraction. Analyses of these structures revealed very particular properties, namely (i) the predominance of quaternary contacts maintaining the structure; (ii) a highly electropositive surface throughout the protein; and (iii) a flexible helix (α1). The goal of this review is to discuss the role of these features in protein structure-function relationship.


Subject(s)
Capsid Proteins/chemistry , Capsid Proteins/metabolism , Flavivirus/metabolism , Flavivirus/classification , Humans , Protein Binding , Protein Conformation, alpha-Helical , Protein Structure, Quaternary , Static Electricity , Structure-Activity Relationship
20.
Sci Rep ; 10(1): 6763, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32317689

ABSTRACT

Modulation of brain activity is one of the main mechanisms capable of demonstrating the synchronization dynamics of neural oscillations. In epilepsy, modulation is a key concept since seizures essentially result from neural hypersynchronization and hyperexcitability. In this study, we have introduced a time-dependent index based on the Kullback-Leibler divergence to quantify the effects of phase and frequency modulations of neural oscillations in neonatal mice exhibiting epileptiform activity induced by Zika virus (ZIKV) infection. Through this index, we demonstrate that fast oscillations (gamma and beta 2) are the more susceptible modulated rhythms in terms of phase, during seizures, whereas slow waves (delta and theta) mainly undergo changes in frequency. The index also allowed detection of specific patterns associated with the interdependent modulation of phase and frequency in neural activity. Furthermore, by comparing ZIKV modulations with the general computational model Epileptors, we verify different signatures related to the brain rhythms modulation in phase and frequency. These findings instigate new studies on the effects of ZIKV infection on neuronal networks from electrophysiological activities, and how different mechanisms can trigger epilepsy.


Subject(s)
Brain Waves/physiology , Epilepsy/physiopathology , Neurons/physiology , Zika Virus Infection/virology , Animals , Beta Rhythm/physiology , Brain/pathology , Brain/virology , Disease Models, Animal , Epilepsy/complications , Epilepsy/virology , Gamma Rhythm/physiology , Humans , Mice , Neurons/virology , Zika Virus/pathogenicity , Zika Virus Infection/complications , Zika Virus Infection/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...